WEIGHTED OVERDETERMINED LINEAR SYSTEMS

Béla Finta
"Petru Maior" University of Tg. Mureş, Romania
e-mail: fintab@science.upm.ro

Abstract

The purpose of this paper is to introduce the weighted overdetermined linear systems and to solve them in the sense of the least squares method

Keywords: overdetermined linear system, weighted overdetermined linear system, least squares method

1 Introduction

Let us consider the real matrix $A=\left(a_{i j}\right)_{\substack{i=\overline{1, m} \\ j=1, n}}$, and the real, transposed arrays $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in$ \mathbb{R}^{n} and $b=\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{T} \in \mathbb{R}^{m}$, respectively. The linear system $A \cdot x=b$ is called overdetermined linear system, if $m>n$. Generally, the overdetermined linear system is incompatible, i.e. doesn't exist an array $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)^{T} \in \mathbb{R}^{n}$ such that $A \cdot x^{*}=b$. It is well known to obtain the solution of the overdetermined linear system using the least squares method, see for example [1] and [2].

2 Main part

Let us consider the weight array $p=$ $\left(p_{1}, p_{2}, \ldots, p_{m}\right)^{T} \in \mathbb{R}^{m}$, where $p_{i}>0$ for every $i=\overline{1, m}$. We denote by $\sqrt{p}=$ $\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{m}}\right) \in \mathbb{R}^{m}$ and for the vectors $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{T} \in \mathbb{R}^{m}$ and $y=$ $\left(y_{1}, y_{2}, \ldots, y_{m}\right)^{T} \in \mathbb{R}^{m}$ we introduce the following product $x \otimes y=\left(x_{1} \cdot y_{1}, x_{2} \cdot y_{2}, \ldots, x_{m} \cdot y_{m}\right) \in \mathbb{R}^{m}$. Let us take the weighted matrix $A_{p}=\left(\sqrt{p_{i}} \cdot a_{i j}\right)_{i=\overline{1, m}}$,
 and the weighted vector $b_{p}=\sqrt{p} \otimes b \in \mathbb{R}^{m}$. So to the overdetermined linear system $A \cdot x=b$ we can attache the weighted overdetermined linear system $A_{p} \cdot x=b_{p}$. It is immediatly that these two linear systems are equivalent. This means that, generally, the weighted overdetermined linear system is incompatible, i.e. doesn't exist an array $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)^{T} \in \mathbb{R}^{n}$ such
that $A_{p} \cdot x^{*}=b_{p}$. For this reason, instead of the classical solution x^{*}, we consider such array $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right) \in \mathbb{R}^{n}$ for which the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\left\|A_{p} \cdot x-b_{p}\right\|_{m}^{2}$ takes the minimal value, where $\|\cdot\|_{m}$ means the Euclidean norm on the space \mathbb{R}^{m}. The array $\bar{x} \in \mathbb{R}^{n}$, which minimizes the function f, it is accepted like the solution of the overdetermined linear system $A_{p} \cdot x=b_{p}$ in the sense of the least squares method. We can observe that $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$ and the minimal point $\bar{x} \in \mathbb{R}^{n}$ verifies the following system of equations with partial derivatives $\frac{\partial f}{\partial x_{k}}(\bar{x})=0$ for every $k=\overline{1, n}$. We calculate the partial derivatives:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{k}}(x)= & \sum_{i=1}^{n} 2 \cdot\left(\sum_{j=1}^{m} \sqrt{p_{i}} \cdot a_{i j} x_{j}-\sqrt{p_{i}} \cdot b_{i}\right) \\
& \cdot \sqrt{p_{i}} \cdot a_{i k}=0
\end{aligned}
$$

and we obtain

$$
\sum_{i=1}^{n} \sqrt{p_{i}} \cdot a_{i k} \cdot\left(\sum_{j=1}^{m} \sqrt{p_{i}} \cdot a_{i j} x_{j}-\sqrt{p_{i}} \cdot b_{i}\right)=0
$$

for every $k=\overline{1, m}$. This linear system has the matrix form $A_{p}^{T} \cdot\left(A_{p} \cdot x-b_{p}\right)=\theta_{\mathbb{R}^{m}}$. This is a Cramer's type linear system with n equations and n unknowns, so $\bar{x} \in \mathbb{R}^{n}$ will be the classical solution of this Cramer's linear system. Consequently the classical solution $\bar{x} \in$ \mathbb{R}^{n} of the linear system $\left(A_{p}^{T} \cdot A_{p}\right) \cdot x=A_{p}^{T} \cdot b_{p}$ it is accepted like solution of the weighted overdetermined linear system $A_{p} \cdot x=b_{p}$ in the sense of the least squares approach.

Next we show that the stationary point $\bar{x} \in \mathbb{R}^{n}$, which verifies the relation $\left(A_{p}^{T} \cdot A_{p}\right) \cdot x=A_{p}^{T} \cdot b_{p}$ will be the minimal point of the function f.

Theorem 1. If A_{p} is a matrix of type $n \times m, b_{p}$ is a column matrix of type $m \times 1$, and $\bar{x} \in \mathbb{R}^{n}$ is the classical solution of the linear system $A_{p}^{T} \cdot\left(A_{p} \cdot x-\right.$ $\left.b_{p}\right)=\theta_{\mathbb{R}^{m}}$, then for every $y \in \mathbb{R}^{m}$ we obtain $\| b_{p}-$ $A_{p} \cdot \bar{x}\left\|_{2} \leq\right\| b_{p}-A_{p} \cdot y \|_{2}$.

Proof. We denote the residual vectors with $r_{\bar{x}}=b_{p}-$ $A_{p} \cdot \bar{x}$ and $r_{y}=b_{p}-A_{p} \cdot y$. Then we have $r_{y}=$ $b_{p}-A_{p} \cdot y=b_{p}-A_{p} \cdot \bar{x}+A_{p} \cdot \bar{x}-A_{p} \cdot y=r_{\bar{x}}+A_{p}$. $(\bar{x}-y)$. Now we use the well known formulas for the transposed matrices and we get: $r_{y}^{T}=\left(r_{\bar{x}}+A_{p}(\bar{x}-\right.$ $y))^{T}=r_{\bar{x}}^{T}+(\bar{x}-y)^{T} A_{p}^{T}$. Consequently taking the scalar product on the space \mathbb{R}^{n} we obtain:

$$
\begin{aligned}
r_{y}^{T} \cdot r_{y} & =\left(r_{\bar{x}}^{T}+(\bar{x}-y)^{T} A_{p}^{T}\right) \cdot\left(r_{\bar{x}}+A_{p}(\bar{x}-y)\right)= \\
& =r_{\bar{x}}^{T} \cdot r_{\bar{x}}+(\bar{x}-y)^{T} \cdot A_{p}^{T} \cdot r_{\bar{x}}+ \\
& +r_{\bar{x}}^{T} \cdot A_{p}(\bar{x}-y)+(\bar{x}-y)^{T} A_{p}^{T} \cdot A_{p}(\bar{x}-y) .
\end{aligned}
$$

But $A_{p}^{T} \cdot r_{\bar{x}}=\theta_{\mathbb{R}^{m}}$ and $r_{\bar{x}}^{T} A_{p}=\left(A_{p}^{T} r_{\bar{x}}\right)^{T}=\theta_{\mathbb{R}^{m}}$. So we can deduce that $r_{y}^{T} \cdot r_{y}=r_{\bar{x}}^{T} \cdot r_{\bar{x}}+(\bar{x}-y)^{T} A_{p}^{T}$. $A_{p}(\bar{x}-y)$. Using the definition of the Euclidean norm it is easy to deduce that $\left\|r_{y}\right\|_{2}^{2}=r_{y}^{T} \cdot r_{y}$. Consequently $\left\|r_{y}\right\|_{2}^{2}=\left\|r_{\bar{x}}\right\|_{2}^{2}+\left\|A_{p}(\bar{x}-y)\right\|_{2}^{2} \geq\left\|r_{\bar{x}}\right\|_{2}^{2}$, what we must it to prove.

The linear system $\left(A_{p}^{T} \cdot A_{p}\right) \cdot x=A_{p}^{T} \cdot b_{p}$ can be solved by Cramer's rule from theory of determinants for $n \in \mathbb{N}^{*}$ small natural numbers, but in other cases, for $n \in \mathbb{N}^{*}$ great natural numbers we can use numerical methods of linear algebra.

Consequence 1. If we choose the weights $p_{1}=p_{2}=$ $\ldots=p_{m}=1$, then from our theorem we reobtain the well known result for overdetermined linear systems.

Example 1. Let us consider the following overdeter-
mined linear system: $\left\{\begin{array}{l}x+y=2 \\ x+2 y=3 \\ 2 x+y=4\end{array}\right.$
If we solve the linear system $\left\{\begin{array}{l}x+y=2 \\ x+2 y=3\end{array}\right.$ then
we receive the solution $x=y=1$, which doesn't verify the last equation: $2 x+y=3 \neq 4$. We obtain the same conclusion if we calculate the characteristic determinant: $\left|\begin{array}{lll}1 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 4\end{array}\right|=1 \neq 0$. So our overdetermined linear system is incompatible and does not have classical solution. We attache to this overdetermined linear system the following weighted overdetermined
linear system: $\left\{\begin{array}{l}\sqrt{p_{1}} \cdot x+\sqrt{p_{1}} \cdot y=2 \cdot \sqrt{p_{1}} \\ \sqrt{p_{2}} \cdot x+2 \sqrt{p_{2}} \cdot y=3 \cdot \sqrt{p_{2}} \\ 2 \sqrt{p_{3}} \cdot x+\sqrt{p_{3}} \cdot y=4 \cdot \sqrt{p_{3}}\end{array}\right.$
We consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=$
$p_{1} \cdot(x+y-2)^{2}+p_{2} \cdot(x+2 y-3)^{2}+p_{3} \cdot(2 x+y-4)^{2}$ and for the linear system $\left\{\begin{array}{l}\frac{\partial f}{\partial x}(x, y)=0 \\ \frac{\partial f}{\partial y}(x, y)=0\end{array}\right.$ we obtain: $\left\{\left(p_{1}+p_{2}+4 p_{3}\right) \cdot x+\left(p_{1}+2 p_{2}+2 p_{3}\right) \cdot y=2 p_{1}+3 p_{2}+8 p_{3}\right.$ $\left\{\left(p_{1}+2 p_{2}+2 p_{3}\right) \cdot x+\left(p_{1}+4 p_{2}+p_{3}\right) \cdot y=2 p_{1}+6 p_{2}+4 p_{3}\right.$ In another way we get $m=3, n=2$, $A_{p}=\left(\begin{array}{cc}\sqrt{p_{1}} & \sqrt{p_{1}} \\ \sqrt{p_{2}} & 2 \cdot \sqrt{p_{2}} \\ 2 \cdot \sqrt{p_{3}} & \sqrt{p_{3}}\end{array}\right), b_{p}=\left(\begin{array}{l}2 \cdot \sqrt{p_{1}} \\ 3 \cdot \sqrt{p_{2}} \\ 4 \cdot \sqrt{p_{3}}\end{array}\right)$, so $A_{p}^{T} \cdot A_{p}=\left(\begin{array}{cc}p_{1}+p_{2}+4 p_{3} & p_{1}+2 p_{2}+2 p_{3} \\ p_{1}+2 p_{2}+2 p_{3} & p_{1}+4 p_{2}+p_{3}\end{array}\right)$ and $A_{p}^{T} \cdot b_{p}=\binom{2 p_{1}+3 p_{2}+8 p_{3}}{2 p_{1}+6 p_{2}+4 p_{3}}$. Hence our system $A_{p}^{T} \cdot A_{p} \cdot x=A_{p}^{T} \cdot b_{p}$ is the same: $\left(\begin{array}{cc}p_{1}+p_{2}+4 p_{3} & p_{1}+2 p_{2}+2 p_{3} \\ p_{1}+2 p_{2}+2 p_{3} & p_{1}+4 p_{2}+p_{3}\end{array}\right) \cdot\binom{x}{y}=$ $\binom{2 p_{1}+3 p_{2}+8 p_{3}}{2 p_{1}+6 p_{2}+4 p_{3}}$. We denote

$$
\Delta=\left|\begin{array}{cc}
p_{1}+p_{2}+4 p_{3} & p_{1}+2 p_{2}+2 p_{3} \\
p_{1}+2 p_{2}+2 p_{3} & p_{1}+4 p_{2}+p_{3}
\end{array}\right|,
$$

$$
\Delta_{x}=\left|\begin{array}{cc}
2 p_{1}+3 p_{2}+8 p_{3} & p_{1}+2 p_{2}+2 p_{3} \\
2 p_{1}+6 p_{2}+4 p_{3} & p_{1}+4 p_{2}+p_{3}
\end{array}\right|
$$

$$
\Delta_{y}=\left|\begin{array}{cc}
p_{1}+p_{2}+4 p_{3} & 2 p_{1}+3 p_{2}+8 p_{3} \\
p_{1}+2 p_{2}+2 p_{3} & 2 p_{1}+6 p_{2}+4 p_{3}
\end{array}\right|,
$$

We have the classical solution $x=\frac{\Delta_{x}}{\Delta}$ and $y=$ $\frac{\Delta_{y}}{\Delta}$. So our weighted overdetermined linear system admits the solution $x=\frac{\Delta_{x}}{\Delta}$ and $y=\frac{\Delta_{y}}{\Delta}$ in the sense of the least squares approach. For the particular case $p_{1}=p_{2}=p_{3}=1$ we obtain $x=\frac{18}{11}$ and $y=\frac{7}{11}$, which is the solution of the initial overdetermined linear system in the sense of the least squares method.

3 Conclusions

In this paper we extended the least squares method from overdetermined linear systems to weighted overdetermined linear systems.

References

[1] B. Finta, Analiză numerică, Editura Universităţii "Petru Maior", Tg. Mureş, 2004.
[2] S. S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, Upper Saddle River, New Jersey, 2002.

